If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+39x+180=0
a = 2; b = 39; c = +180;
Δ = b2-4ac
Δ = 392-4·2·180
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(39)-9}{2*2}=\frac{-48}{4} =-12 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(39)+9}{2*2}=\frac{-30}{4} =-7+1/2 $
| 4x^2+78x+360=0 | | -2x-10=2x-50 | | 3w^=75 | | 625=(2.7)^0.584t | | 6x+15=2x+28 | | 9z+9=3z-19 | | 247x=51710 | | 7.848.w=36 | | (3x+8)(x+4)=180 | | -6x-2(-4x-7)=32 | | 10(-3y+10)+7y=-38 | | 0.04d=20 | | (2n+7)+(3n+3)=90 | | (2n+7)+(3n+3)=180 | | (6d+7)+(9d-7)=180 | | (3e+2)+55=180 | | 0.75j=-3 | | (9x+39)+(11x+61)=180 | | (64-4x)=(58-2x) | | x+120+37=180 | | x+53+60=180 | | x+71+49=180 | | 5t=3=21-4t | | yx(7.2)=5.4 | | 2(3x+20)=16 | | 3+12/5x=21/4x-1 | | g^2+7g-30=0 | | m^2-17m-200=0 | | -6y+6+2y=2y+4+2y | | x^2+130x+x^2-15x=180 | | 41x-3=3+39x | | -5+4(6b+3)=88 |